
Package: antaresProcessing (via r-universe)
November 27, 2024

Type Package

Title 'Antares' Results Processing

Version 0.18.2

Description Process results generated by 'Antares', a powerful open
source software developed by RTE (Réseau de Transport
d’Électricité) to simulate and study electric power systems
(more information about 'Antares' here:
<https://github.com/AntaresSimulatorTeam/Antares_Simulator>).
This package provides functions to create new columns like net
load, load factors, upward and downward margins or to compute
aggregated statistics like economic surpluses of consumers,
producers and sectors.

URL https://github.com/rte-antares-rpackage/antaresProcessing

BugReports https://github.com/rte-antares-rpackage/antaresProcessing/issues

License GPL (>= 2) | file LICENSE

Depends antaresRead (>= 1.1.5)

Imports data.table, methods, stats

Suggests parallel, testthat, knitr, rmarkdown, covr

RoxygenNote 7.2.2

VignetteBuilder knitr

Encoding UTF-8

biocViews Infrastructure, DataImport

NeedsCompilation no

Config/pak/sysreqs make libicu-dev libssl-dev zlib1g-dev

Repository https://rte-antares-rpackage.r-universe.dev

RemoteUrl https://github.com/rte-antares-rpackage/antaresprocessing

RemoteRef HEAD

RemoteSha bb51ed82315b5f3922e8b7a8b2deb408c748edab

1

https://github.com/AntaresSimulatorTeam/Antares_Simulator
https://github.com/rte-antares-rpackage/antaresProcessing
https://github.com/rte-antares-rpackage/antaresProcessing/issues

2 addCongestionLink

Contents

addCongestionLink . 2
addDownwardMargin . 3
addExportAndImport . 4
addLoadFactorLink . 5
addNetLoad . 6
addUpwardMargin . 7
compare . 8
externalDependency . 10
getValues . 11
loadFactor . 12
mergeAllAntaresData . 14
modulation . 14
netLoadRamp . 16
surplus . 18
surplusClusters . 19
surplusSectors . 21
synthesize . 22
thermalGroupCapacities . 24

Index 25

addCongestionLink Add the congestion frequency and the number of congested hours for
a given link

Description

This function computes 4 congestion variables of link (congestion frequency and congestion hours
in direct and indirect direction) and adds them to an antaresData object. The input object must be
at an hourly timestep.

Usage

addCongestionLink(x, timeStep = c("daily", "weekly", "monthly", "annual"))

Arguments

x Object of class antaresData created with function readAntares. It must con-
tain the columns CONG. PROB + and CONG. PROB - and be at an hourly timestep.

timeStep character Desired time step for the result.

addDownwardMargin 3

Value

addCongestionLink modifies its input by adding four columns:

congestionFrequencyDirect

This is the congestion frequency on the direct direction of the link at the speci-
fied time resolution.

congestionFrequencyDirect = round(sum((`CONG. PROB +` != 0)/.N), 2)

congestionFrequencyIndirect

This is the congestion frequency on the indirect direction of the link at the spec-
ified time resolution.

congestionFrequencyIndirect = round(sum((`CONG. PROB -` != 0)/.N), 2)

congestionHoursDirect

This is the number of congestion hours on the direct direction of the link at the
specified time resolution.

congestionHoursDirect = sum(`CONG. PROB +` != 0)

congestionHoursIndirect

This is the number of congestion hours on the direct direction of the link at the
specified time resolution.

congestionHoursIndirect = sum(`CONG. PROB -` != 0)

Examples

Not run:
Data required by the function

mydata <- readAntares(links = "all")
mydata <- addCongestionLink(mydata, timeStep = "daily")
names(mydata)

mydata <- addCongestionLink(mydata, timeStep = c('daily'))

End(Not run)

addDownwardMargin Add downward margins of areas

Description

This function computes isolated and interconnected downward margins of areas and add them to an
antaresData object.

Usage

addDownwardMargin(x)

4 addExportAndImport

Arguments

x An object of class antaresData created with readAntares

Details

For a given area, downward margin is equal to the thermal minimum production (due must run
production and minimum stable power of production units) plus the fatal productions minus the
load and the pumping capacity. More formally it is equal to:

isolatedDownwardMargin = thermalPMin + `H. ROR` + WIND + SOLAR + `MISC. NDG` - LOAD - pumpingCapacity

The variable pumpingCapacity is automatically created when pumped storage areas are removed
with function removeVirtualAreas. If there is not any such area, pumpingCapacity is assumed
to be equal to 0.

Interconnected downward margin is the isolated downward margin plus the exports minus the im-
ports:

interconnectedDownwardMargin = isolatedDownwardMargin + BALANCE - `ROW BAL.`

Value

The function modifies its input by adding to it two new columns isolatedDownwardMargin and
interconnectedDownwardMargin. For convenience it invisibly returns x.

Examples

Not run:
data required by the function
showAliases("downwardMargin")

mydata <- readAntares(select = "downwardMargin")
mydata <- removeVirtualAreas(mydata, getAreas(c("pump", "stor")))

addDownwardMargin(mydata)
names(mydata$areas)

End(Not run)

addExportAndImport Export and import of areas or districts

Description

This function computes the export and import of areas or districts and add it to an antaresData
object.

Usage

addExportAndImport(x, addCapacities = FALSE, opts = NULL)

addLoadFactorLink 5

Arguments

x an object of class "antaresDataList" created with the function readAntares. It
has to contain some areas and all the links that are connected to these areas.
Moreover the function "removeVirtualAreas" must be call before.

addCapacities If TRUE, export and import capacities are added.

opts opts

Value

addExportAndImport modifies its input by adding to it columns:

export export for an area or district

import import for an area or district

capExport capacity of export for an area or district, if addCapacities is set to TRUE

capImport capacity of import for an area or district, if addCapacities is set to TRUE

Examples

Not run:
Data required by the function
showAliases("exportsImports")

mydata <- readAntares(select = "exportsImports")
addExportAndImport(mydata)
names(mydata$areas)

End(Not run)

addLoadFactorLink Load factors of link

Description

This function computes the load factor of link and add it to an antaresData object.

Usage

addLoadFactorLink(x)

Arguments

x Object of class antaresData created with function readAntares. It must con-
tain the columns transCapacityDirect and transCapacityIndirect.

6 addNetLoad

Value

addLoadFactorLink modifies its input by adding to it two columns:

loadFactor Proportion of the installed capacity of a link that is effectively used:

loadFactor = `FLOW LIN` / transCapacity

Notice that loadFactor can be positive or negative according to the direction of
the flow.

congestion 1 if the link is saturated (loadFactor = +/-1), 0 otherwise.

For convenience, the function invisibly returns the modified input.

Examples

Not run:
Data required by the function
showAliases("loadFactorLink")

mydata <- readAntares(select = "loadFactorLink")
addLoadFactorLink(mydata)
names(mydata)

End(Not run)

addNetLoad Net load of areas

Description

This function computes the net load of areas or districts and add it to an antaresData object. Net
load is the load of an area minus productions that are not controlled: wind, solar, hydraulic run of
river, etc. the production of clusters in must run mode is also subtracted by default.

Usage

addNetLoad(x, ignoreMustRun = FALSE)

Arguments

x An antaresData object created with readAntares. Unless ignoreMustRun is
true, it must have a column mustRunTotal.

ignoreMustRun If TRUE, the production in must run mode is not substracted to the net load.

Value

addNetLoad modifies its input by adding to it a column "netLoad". For convenience, it invisibly
returns the modified input. formula = LOAD - ‘ROW BAL.‘ - PSP - ‘MISC. NDG‘ - ‘H. ROR‘ -
WIND - SOLAR - mustRunTotal

addUpwardMargin 7

Examples

Not run:
Data required by the function
showAliases("netLoad")

mydata <- readAntares(select = "netLoad")
addNetLoad(mydata)
names(mydata)

End(Not run)

addUpwardMargin Add upward margin of areas

Description

This function computes isolated and interconnected upward margins of areas and add them to an
antaresData object.

Usage

addUpwardMargin(x)

Arguments

x An object of class antaresData created with readAntares

Details

For a given area and time step, isolated upward margin is the difference between the available
production capacity plus the fatal productions and the load. More formally it is equal to:

isolatedUpwardMargin = (`AVL DTG` + generatingMaxPower + storageCapacity) + (`H. ROR`
+ WIND + SOLAR + `MISC. NDG`) - LOAD

NB: in Antares v6 (and earlier versions) generatingMaxPower is replaced by hstorPMaxAvg.

The variable storageCapacity is automatically created when pumped storage areas are removed
with function removeVirtualAreas. If there is not any such area, storageCapacity is assumed
to be equal to 0.

Interconnected upward margin is the isolated upward margin plus the imports and minus the exports:

interconnectedUpwardMargin = isolatedUpwardMargin - BALANCE + `ROW BAL.`

Value

The function modifies its input by adding to it two new columns isolatedUpwardMargin and
interconnectedUpwardMargin. For convenience it invisibly returns x.

8 compare

Examples

Not run:
Data required by the function
showAliases("upwardMargin")

mydata <- readAntares(select = "upwardMargin")
mydata <- removeVirtualAreas(mydata, getAreas(c("pump", "stor")))

addUpwardMargin(mydata)

End(Not run)

compare Compare two simulations or two antaresData

Description

compare has been designed to compare two surpluses created with function "surplus" but it can be
used to compare the values of two tables of class antaresData that contain the same type of data.

Usage

compare(x, y, method = c("diff", "ratio", "rate"))

Arguments

x Table of class antaresData. x can be an antaresDataTable or antaresDataList.

y Table of class antaresData. x can be an antaresDataTable or antaresDataList. It
must contain the same type of data than ’x’: if ’x’ contains areas, it must contain
areas, ... Moreover it has to have same time step and contain either synthetic or
detailed results like ’x’.

method Method used two compare the two tables. "diff" compute the difference be-
tween ’y’ and ’x’. "ratio" computes the ratio between ’y’ and ’x’. Finally,
"rate" computes the rate of change between ’y’ and ’x’ (it is equal to the ratio
between ’y’ and ’x’ minus one).

Value

a data.table of class antaresDataTable. It contains all shared rows and columns between ’x’ and
’y’. The columns contain the statistic chosen: difference, ratio or rate of change.

Examples

Not run:
First simulation
studyPath <- "path/to/study/"

setSimulationPath(studyPath, 1)

compare 9

mydata1 <- readAntares("all", "all", synthesis = FALSE)
surplus1 <- surplus(mydata1, groupByDistrict = TRUE)

Second simulation
setSimulationPath(studyPath, 2)
mydata2 <- readAntares("all", "all", synthesis = FALSE)
surplus2 <- surplus(mydata2, groupByDistrict = TRUE)

compare(surplus1, surplus2)

opts1 <- setSimulationPath(studyPath,-1)
mydata1<-readAntares(areas = "all",
links = "all",
select = c("allAreas", "allLinks"),
mcYears = c(1),
linkCapacity = TRUE)

opts2 <- setSimulationPath(studyPath,-2)
mydata2 <- readAntares(areas = "all",
links = "all",
select = c("allAreas", "allLinks"),
mcYears = c(1),
linkCapacity = TRUE)

opts3 <- setSimulationPath(studyPath,-3)
mydata3 <- readAntares(areas = "all",
links = "all",
select = c("allAreas", "allLinks"),
mcYears = c(1),
linkCapacity = TRUE)

opts4 <- setSimulationPath(studyPath, -4)
mydata4 <- readAntares(areas = "all",
links = "all",
select=c("allAreas", "allLinks"),
mcYears = c(1),
linkCapacity = TRUE)

opts5 <- setSimulationPath(studyPath, -5)
mydata5 <- readAntares(areas = "all",
links = "all",
select=c("allAreas", "allLinks"),
mcYears = c(1),
linkCapacity = TRUE)

resCompare1 <- compare(mydata2, mydata1, method = "diff")
resCompare2 <- compare(mydata3, mydata1, method = "diff")
resCompare3 <- compare(mydata4, mydata1, method = "diff")
resCompare4 <- compare(mydata5, mydata1, method = "diff")

listCompare <- list(resCompare1, resCompare2, resCompare3, resCompare4)

for (i in 1:length(listCompare)){

10 externalDependency

listCompare[[i]] <- removeVirtualAreas(listCompare[[i]],
storageFlexibility =

getAreas(select = c("z_dsr", "y_mul", "pum", "tur")))
}

ml <- readRDS("path/to/mapLayout.rds")
plotMap(listCompare, ml)

End(Not run)

externalDependency External Dependencies in imports and exports

Description

This function computes the dependency in imports and export for each area or districts at a given
time step. Dependency in imports represents moments where imports are required to have no loss
of load. Dependency in exports represents moments where exports are required to have no spilled
energy.

Usage

externalDependency(x, timeStep = "annual", synthesis = FALSE, opts = NULL)

Arguments

x An object created with function readAntares. It must contain data for areas
and/or districts. More specifically this function requires the columns generatingMaxPower
(or hstorPMaxAvg for Antares v6 and earlier), and netLoad. To get these
columns, one has to invoke readAntares with the parameter hydroStorageMaxPower
= TRUE and addNetLoad (see examples).
Moreover it needs to have a hourly time step.
This object must also contain linkCapacity if there was virtual areas remove by
removeVirtualAreas to be able to calculate pumping and storage capacities.

timeStep Desired time step for the result.

synthesis If TRUE, average external dependencies are returned. Else the function returns
external dependencies per Monte-Carlo scenario.

opts opts

Value

A data.table of class antaresDataTable with the following columns:

area Area name.

timeId Time id and other time columns.

pumping capacity of pumping

getValues 11

storage capacity of storage

exportsLevel netLoad + pumping

importsLevel netLoad - ‘AVL DTG‘ - hydroStorageMaxPower - storage > 0
exportsFrequency

number of time step where this criteria is satisfied
criteria : netLoad + pumping < 0

importsFrequency

number of time step where this criteria is satisfied
criteria : netLoad - ‘AVL DTG‘ - hydroStorageMaxPower - storage > 0

Examples

Not run:
Data required by the function
showAliases("externalDependency")

mydata <- readAntares(select = "externalDependency")
addNetLoad(mydata)
externalDependency(mydata)

if there are some virtual pumping/storage areas, remove them with
removeVirtualAreas
mydata <- removeVirtualAreas(mydata, c("pumping", "storage"))
externalDependency(mydata, ignoreMustRun = TRUE)

End(Not run)

getValues Get values of a variable

Description

Get all the values of a variable for some years Monte Carlo

Usage

getValues(data = NULL, variable = NULL, mcyear = "all")

Arguments

data an object of class "antaresData" created with the function readAntares.

variable a variable of data

mcyear set of mcYear

12 loadFactor

Examples

Not run:

mydata <- readAntares(areas="all",clusters="all", select="LOAD")
getValues(mydata$areas, variable="LOAD")
getValues(myData$clusters, variable = "production")

End(Not run)

loadFactor Load factors of clusters

Description

This function computes the load factor and other related statistics for cluster of a study.

Usage

loadFactor(
x,
timeStep = "annual",
synthesis = FALSE,
clusterDesc = NULL,
loadFactorAvailable = FALSE,
opts = NULL

)

Arguments

x Object of class antaresData created with function readAntares. It must con-
tain hourly detailed results for clusters and has to contain the columns minGenModulation.

timeStep Desired time step for the result.

synthesis If TRUE, average surpluses are returned. Else the function returns surpluses per
Monte-Carlo scenario.

clusterDesc A table created with the function readClusterDesc. If is this parameter is set
to NULL (the default), then the function attempts to read the needed data in the
same study as x.

loadFactorAvailable

Should loadFactorAvailable be added to the result?

opts opts where clusterDesc will be read if null based on data

loadFactor 13

Value

a data.table of class antaresDataTablecontaining the following columns:

area Area name

cluster Cluster name

mcYear Only if synthesis=FALSE. Id of the Monte-carlo scenario

timeId Time id and other time variables

loadFactor Load factor of the cluster. It represent the proportion of the installed capacity of
a cluster that is effectively generate

Formula: production / (unitcount * nominalcapacity)

#’

loadFactorAvailable

Load factor of the cluster. It represent the proportion of the capacity available
of a cluster that is effectively generate

Formula: production / thermalAvailability

propHoursMinGen

Proportion of hours when production is positive and all units of a cluster are
either off, either producing at their minimum. This situation occurs when units
are kept producing above the optimal level to avoid future startup costs or to
satisfy the constraints generated by parameters "Min. up Time" or "Min gen.
modulation".

Formula: mean(1 if production > 0 and production = max(min.stable.power *
unitcount, minGenModulation * nominalcapacity * unitcount) else 0)

propHoursMaxGen

Proportion of hours when all units started produce at their maximal capacity.

Formula: mean(1 if production > 0 and production = NODU * nominalcapacity
* (1 - spinning / 100))

Examples

Not run:
data required by the function
showAliases("loadfactor")

mydata <- readAntares(select = "loadfactor")
loadFactor(mydata, synthesis = TRUE)

End(Not run)

14 modulation

mergeAllAntaresData Merge all antaresDataSets

Description

Merge all antaresDataSets

Usage

mergeAllAntaresData(dta)

Arguments

dta antaresData

Examples

Not run:
setSimulationPath("Mystud", 1)
dta <- readAntares(areas = "all", links = "all", clusters = "all", districts = "all")
dta <- mergeAllAntaresData(dta)

End(Not run)

modulation Compute the modulation of cluster units

Description

This function computes the modulation of cluster units or of sectors.

Usage

modulation(
x,
timeStep = "annual",
synthesis = FALSE,
by = c("cluster", "sector"),
clusterDesc = NULL,
opts = NULL

)

modulation 15

Arguments

x An antaresData object created with readAntares. It must contain the hourly
detailed results for clusters if by = "cluster" or for areas and/or districts if by
= "sector"

timeStep Desired time step for the result.

synthesis If TRUE, average surpluses are returned. Else the function returns surpluses per
Monte-Carlo scenario.

by Should modulations computed by cluster or by sector? Possible values are "sec-
tor" and "cluster".

clusterDesc A table created with the function readClusterDesc. If is this parameter is set
to NULL (the default), then the function attempts to read the needed data in the
same study as x.

opts opts where clusterDesc will be read if null based on data

Value

A data.table of class antaresDataTable or a list of such tables with the following columns:

area Area name. If byDistrict=TRUE, this column is replaced by column district.

cluster Cluster name. If by="sector", this column is replaced by column sector.

timeId Time id and other time columns.
upwardModulation

Maximal absolute modulation of a cluster unit or of the sector, if timeStep is
hourly.

downwardModulation

Maximal absolute modulation of a cluster unit or of the sector, if timeStep is
hourly.

absoluteModulation

Maximal absolute modulation of a cluster unit or of the sector, if timeStep is
hourly.

avg_upwardModulation

Average upward modulation of a cluster unit or of the sector, if timeStep is not
hourly.

avg_downwardModulation

Average downward modulation of a cluster unit or of the sector, if timeStep is
not hourly.

avg_absoluteModulation

Average absolute modulation of a cluster unit or of the sector, if timeStep is not
hourly.

max_upwardModulation

Maximal upward modulation of a cluster unit or of the sector, if timeStep is not
hourly.

max_downwardModulation

Maximal downward modulation of a cluster unit or of the sector, if timeStep is
not hourly.

16 netLoadRamp

max_absoluteModulation

Maximal absolute modulation of a cluster unit or of the sector, if timeStep is
not hourly.

Notice that if by="cluster", the function computes the modulation per unit, i.e. the modulation
of a cluster divided by the number of units of the cluster. On the opposite, if by="sector", the
function returns the modulation of the global production of the sector. Moreover, if parameter x
contains area and district data, the function returns a list with components areas and districts.

Examples

Not run:
data required by the function
showAliases("modulation")

mydata <- readAntares(select="modulation")

Modulation of cluster units
modulation(mydata)

Aggregate Monte-Carlo scenarios
modulation(mydata, synthesis = TRUE)

Modulation of sectors
modulation(mydata, by = "sector")

Modulation of sectors per district
modulation(mydata, by = "sector")

End(Not run)

netLoadRamp Ramp of an area

Description

This function computes the ramp of the consumption and the balance of areas and/or districts.

Usage

netLoadRamp(
x,
timeStep = "hourly",
synthesis = FALSE,
ignoreMustRun = FALSE,
opts = NULL

)

netLoadRamp 17

Arguments

x Object of class antaresData containing data for areas and/or districts. It must
contain the column BALANCE and either the column "netLoad" or the columns
needed to compute the net load see addNetLoad.

timeStep Desired time step for the result.

synthesis If TRUE, average surpluses are returned. Else the function returns surpluses per
Monte-Carlo scenario.

ignoreMustRun Should the must run production be ignored in the computation of the net load?

opts opts where clusterDesc will be read if null based on data

Value

netLoadRamp returns a data.table or a list of data.tables with the following columns:

netLoadRamp Ramp of the net load of an area. If timeStep is not hourly, then these columns
contain the average value for the given time step. Formula = netLoad - shift(netLoad,
fill = 0)

balanceRamp Ramp of the balance of an area. If timeStep is not hourly, then these columns
contain the average value for the given time step.
formula = BALANCE - shift(BALANCE, fill = 0)

areaRamp Sum of the two previous columns. If timeStep is not hourly, then these columns
contain the average value for the given time step.
formula = netLoadRamp + balanceRamp

minNetLoadRamp Minimum ramp of the net load of an area, if timeStep is not hourly.

minBalanceRamp Minimum ramp of the balance of an area, if timeStep is not hourly.

minAreaRamp Minimum ramp sum of the sum of balance and net load, if timeStep is not
hourly.

maxNetLoadRamp Maximum ramp of the net load of an area, if timeStep is not hourly.

maxBalanceRamp Maximum ramp of the balance of an area, if timeStep is not hourly.

maxAreaRamp Maximum ramp of the sum of balance and net load, if timeStep is not hourly.

For convenience the function invisibly returns the modified input.

Examples

Not run:
data required by the function
showAliases("netLoadRamp")

mydata <- readAntares(select="netLoadRamp")
netLoadRamp(mydata, timeStep = "annual")

End(Not run)

18 surplus

surplus Compute economic surplus

Description

This function computes the economic surplus for the consumers, the producers and the global sur-
plus of an area.

Usage

surplus(
x,
timeStep = "annual",
synthesis = FALSE,
groupByDistrict = FALSE,
hurdleCost = TRUE,
opts = NULL

)

Arguments

x an object of class "antaresDataList" created with the function readAntares. It
has to contain some areas and all the links that are connected to these areas.
Moreover it needs to have a hourly time step and detailed results.

timeStep Desired time step for the result.
synthesis If TRUE, average surpluses are returned. Else the function returns surpluses per

Monte-Carlo scenario.
groupByDistrict

If TRUE, results are grouped by district.
hurdleCost If TRUE, HURDLE COST will be removed from congestionFees.
opts opts

Value

A data.table with the following columns:

area Name of the area.
timeId timeId and other time columns.
consumerSurplus

The surplus of the consumers of some area.
formula = (unsuppliedCost[area] - ‘MRG. PRICE‘) * LOAD

producerSurplus

The surplus of the producers of some area.
formula = ‘MRG. PRICE‘ * production - ‘OP. COST‘
Production includes "NUCLEAR", "LIGNITE", "COAL", "GAS", "OIL", "MIX.
FUEL", "MISC. DTG", "H. STOR", "H. ROR", "WIND", "SOLAR" and "MISC.
NDG"

surplusClusters 19

rowBalanceSurplus

Surplus of the ROW balance.
Formula: ‘MRG. PRICE‘ * ‘ROW BAL.‘

storageSurplus Surplus created by storage/flexibility areas.
formula = storage * x$areas$‘MRG. PRICE‘

congestionFees The congestion fees of a given area. It equals to half the congestion fees of the
links connected to that area.
formula = (congestionFees-hurdleCost) / 2

globalSurplus Sum of the consumer surplus, the producer surplus and the congestion fees.
formula = consumerSurplus + producerSurplus + storageSurplus + congestion-
Fees + rowBalanceSurplus

Examples

Not run:
showAliases("surplus")

mydata <- readAntares(select="surplus")
surplus(mydata)

surplus(mydata, synthesis = TRUE)
surplus(mydata, synthesis = TRUE, groupByDistrict = TRUE)

End(Not run)

surplusClusters Compute the surplus of clusters

Description

This function computes the surplus of clusters of interest. The surplus of a cluster is equal to its
production times the marginal cost of the area it belongs to minus variable, fixed and startup costs.

Usage

surplusClusters(
x,
timeStep = "annual",
synthesis = FALSE,
surplusLastUnit = FALSE,
clusterDesc = NULL,
opts = NULL

)

20 surplusClusters

Arguments

x An antaresData object created with readAntares. It must contain an element
clusters and an element areas with at least the column MRG. PRICE.

timeStep Desired time step for the result.

synthesis If TRUE, average surpluses are returned. Else the function returns surpluses per
Monte-Carlo scenario.

surplusLastUnit

Should the surplus of the last unit of a cluster be computed ? If TRUE, then
x must have been created with the option thermalAvailabilities=TRUE in
order to contain the required column "available units"

clusterDesc A table created with the function readClusterDesc. If is this parameter is set
to NULL (the default), then the function attempts to read the needed data in the
same study as x.

opts opts where clusterDesc will be read if null based on data

Value

A data.table of class antaresDataTable with the following columns:

area Area name.

cluster Cluster name.

timeId Time id and other time columns.

variableCost Proportional costs of production of the cluster

Formula = marginal cost * production

fixedCost Fixed costs of production of the cluster

Formula = NODU * fixed cost

startupCost Start up costs of the cluster.

surplusPerUnit Average surplus per unit of the cluster.

formula = (‘MRG. PRICE‘ * production - opCost - startupCost) / unitcount

surplusLastUnit

Surplus of the last unit of the cluster.

formula = (‘MRG. PRICE‘ * prodLastUnit - opCost / pmax(1, NODU) - startup.cost)

totalSurplus Surplus of all units of the cluster.

formula = ‘MRG. PRICE‘ * production - opCost - startupCost

economicGradient

Economic gradient of a cluster. It is equal to the surplus per unit divided by the
capacity of a unit.

formula = surplusPerUnit / nominalcapacity

surplusSectors 21

Examples

Not run:
Data required by the function:
showAliases("surplusClusters")

mydata <- readAntares(select = "surplusClusters")
surplusClusters(mydata)

Computing the surplus of the last unit of a cluster requires the additional
column "availableUnits". To add this column, one has to use parameter
"thermalAvailabilities = TRUE" in readAntares.

mydata <- readAntares(select = c("surplusClusters", "thermalAvailabilities"))
surplusClusters(mydata, surplusLastUnit = TRUE)

End(Not run)

surplusSectors Compute the surplus of sectors

Description

This function computes the surplus of sectors for each area and time step. For sectors wind, solar,
hydraulic storage and run of river, production costs are assumed to be equal to 0.

Usage

surplusSectors(
x,
sectors = c("thermal", "renewable"),
timeStep = "annual",
synthesis = FALSE,
groupByDistrict = FALSE,
clusterDesc = NULL,
opts = NULL

)

Arguments

x Object of class antaresData created with readAntares. It needs to contain
hourly detailed results of a simulation. Moreover, it must contain area data and
if thermal sectors are required, cluster data.

sectors vector containing the name of the sectors for which surplus needs to be com-
puted. Possible values are "thermal" for thermal sectors(nuclear, coal,..), "ren"
for renewable energy and any column name that can be considered as a produc-
tion (for instance production of virtual areas). It is assumed that the cost of these

22 synthesize

productions is equal to 0 as for renewable energies. If the parameter contains
the value "thermal", then the parameter x has to contain cluster data.

timeStep Desired time step for the result.

synthesis If TRUE, average surpluses are returned. Else the function returns surpluses per
Monte-Carlo scenario.

groupByDistrict

If TRUE, results are grouped by district.

clusterDesc A table created with the function readClusterDesc. If is this parameter is set
to NULL (the default), then the function attempts to read the needed data in the
same study as x.

opts opts

Value

A data.table of class "antaresData". It contains one column per sector containing the surplus of that
sector for a given area and timeId.

Examples

Not run:

Data required by the function:
showAliases("surplusSectors")

mydata <- readAntares(select = "surplusSectors")
surplusSectors(mydata)

Note that if the parameter "sectors" is modified, the function can require
more or less data. For instance, if one only wants surplus for thermal
sectors:
mydata <- readAntares(areas = "all", clusters = "all", synthesis = FALSE,

select = "MRG. PRICE")
surplusSectors(mydata, sectors = "thermal")

End(Not run)

synthesize Synthesize Monte-Carlo scenarios

Description

This function takes as input an object of class antaresData containing detailed results of a simula-
tion and creates a synthesis of the results. The synthesis contains the average value of each variable
over Monte-Carlo scenarios and eventually other aggregated statistics

synthesize 23

Usage

synthesize(x, ..., prefixForMeans = "", useTime = TRUE)

Arguments

x an object of class antaresData created with readAntares and containing de-
tailed results of an Antares simulation.

... Additional parameters indicating which additional statistics to produce. See
details to see how to specify them.

prefixForMeans Prefix to add to the columns containing average values. If it is different than "",
a "_" is automatically added.

useTime use times columns for synthesize.

Details

Additional statistics can be asked in three different ways:

1. A character string in "min", "max", "std", "median" or "qXXX" where "XXX" is a real number
between 0 and 100. It will add for each column respectively the minimum or maximum value,
the standard deviation, the median or a quantile.

2. A named argument whose value is a function or one of the previous aliases. For instance med
= median will calculate the median of each variable. The name of the resulting column will
be prefixed by "med_". Similarly, l = "q5" will compute the 5 each variable and put the result
in a column with name prefixed by "l_"

3. A named argument whose value is a list. It has to contain an element fun equal to a function or
an alias and optionally an element only containing the names of the columns to which to apply
the function. For instance med = list(fun = median, only = c("LOAD", "MRG. PRICE"))
will compute the median of variables "LOAD" and "MRG. PRICE". The result will be stored
in columns "med_LOAD" and "med_MRG. PRICE".

The computation of custom statistics can take some time, especially with hourly data. To improve
performance, prefer the third form and compute custom statistics only on a few variables.

Value

Synthetic version of the input data. It has the same structure as x except that column mcYear
has been removed. All variables are averaged across Monte-Carlo scenarios and eventually some
additional columns have been added corresponding to the requested custom statistics.

Examples

Not run:
mydata <- readAntares("all", timeStep = "annual")

synthesize(mydata)

Add minimum and maximum for all variables
synthesize(mydata, "min", "max")

24 thermalGroupCapacities

Compute a custom statistic for all columns
synthesize(mydata, log = function(x) mean(log(1 + x)))

Same but only for column "LOAD"
synthesize(mydata,

log = list(fun = function(x) mean(log(1 + x)),
only = "LOAD"))

Compute the proportion of time balance is positive

synthesize(mydata, propPos = list(fun = function(x) mean(x > 0),
only = "BALANCE"))

Compute 95% confidence interval for the marginal price
synthesize(mydata,

l = list(fun = "q2.5", only = "MRG. PRICE"),
u = list(fun = "q97.5", only = "MRG. PRICE"))

End(Not run)

thermalGroupCapacities

compute thermal capacities from study

Description

compute thermal capacities from study

Usage

thermalGroupCapacities(opts = simOptions())

Arguments

opts simOptions obtain which setSimulationPath

Index

addCongestionLink, 2
addDownwardMargin, 3
addExportAndImport, 4
addLoadFactorLink, 5
addNetLoad, 6, 10, 17
addUpwardMargin, 7

compare, 8

externalDependency, 10

getValues, 11

loadFactor, 12

mergeAllAntaresData, 14
modulation, 14

netLoadRamp, 16

readAntares, 2, 4, 5, 7, 10, 12, 23
readClusterDesc, 12, 15, 20, 22
removeVirtualAreas, 4, 7, 10

setSimulationPath, 24
surplus, 18
surplusClusters, 19
surplusSectors, 21
synthesize, 22

thermalGroupCapacities, 24

25

	addCongestionLink
	addDownwardMargin
	addExportAndImport
	addLoadFactorLink
	addNetLoad
	addUpwardMargin
	compare
	externalDependency
	getValues
	loadFactor
	mergeAllAntaresData
	modulation
	netLoadRamp
	surplus
	surplusClusters
	surplusSectors
	synthesize
	thermalGroupCapacities
	Index

